1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
import requests
from multiprocessing import Process, Queue
from io import BytesIO
from datetime import datetime
#import matplotlib.pyplot as plt
import pickle
import multiprocessing
import hashlib
import sys
import random
import warnings
import urllib
import os
import time
import argparse
import json
import threading
#import pycuda.autoinit # This is needed for initializing CUDA driver
import logging
import paho.mqtt.client as mqtt
import uuid
import numpy as np
from numpy import array, zeros, fabs, linalg
import scipy.stats as st
from jproperties import Properties
import zmq
from PIL import Image
from configparser import ConfigParser
import cv2
import warnings
warnings.simplefilter('ignore', RuntimeWarning)
logging.basicConfig(level=logging.INFO)
CAMERA_COORDINATES = (0, 0)
table=[]
num_threads = 4
threads = []
class CameraConfigs:
def __init__(self, camera_id, camera_width, camera_height, camera_rtsp, camera_http, camera_lat, camera_lon, camera_rot, camera_zoom, camera_heading):
self.camera_id = camera_id
self.camera_width = camera_width
self.camera_height = camera_height
self.camera_rtsp = camera_rtsp
self.camera_http = camera_http
self.camera_lat = camera_lat
self.camera_lon = camera_lon
self.camera_rot = camera_rot
self.camera_zoom = camera_zoom
self.camera_heading = camera_heading
class ServiceConfigs:
def __init__(self, camera_configs, detection_rate, detection_method, detection_confidence_threshold, detection_object_set, detection_timeout, detection_location, detection_broker, frame_points, world_points):
self.camera_configs = camera_configs
self.detection_rate = detection_rate
self.detection_method = detection_method
self.detection_confidence_threshold = detection_confidence_threshold
self.detection_object_set = detection_object_set
self.detection_timeout = detection_timeout
self.detection_location = detection_location
self.detection_broker = detection_broker
self.frame_points = frame_points
self.world_points = world_points
def compute_chunk(start, end, A, width, lookup):
for l in range(start, end):
for c in range(0, width):
B = [[c],
[l],
[1]]
# Calculate the result for the given point
result = [[sum(a * b for a, b in zip(A_row, B_col))
for B_col in zip(*B)]
for A_row in A]
lookup[l][c] = [result[0][0] / result[2][0], result[1][0] / result[2][0]]
# Parallelize the computation of the lookup matrix
def parallel_compute_lookup(A, height, width, num_threads):
# Initialize the lookup matrix
lookup = [[0 for col in range(width)] for row in range(height)]
# Create a list to hold the threads
threads = []
# Divide the workload among threads
chunk_size = height // num_threads
for i in range(num_threads):
start = i * chunk_size
end = start + chunk_size if i < num_threads - 1 else height
thread = threading.Thread(target=compute_chunk, args=(start, end, A, width, lookup))
threads.append(thread)
# Start the threads
for thread in threads:
thread.start()
# Wait for all threads to finish
for thread in threads:
thread.join()
return lookup
# Function to perform Gaussian elimination and back substitution
def gaussian_elimination_and_back_substitution(a, b, x, n, start, end):
for k in range(start, end):
if fabs(a[k, k]) < 1.0e-12:
for i in range(k + 1, n):
if fabs(a[i, k]) > fabs(a[k, k]):
a[[k, i]] = a[[i, k]]
b[[k, i]] = b[[i, k]]
break
for i in range(k + 1, n):
if a[i, k] == 0:
continue
factor = a[k, k] / a[i, k]
for j in range(k, n):
a[i, j] = a[k, j] - a[i, j] * factor
b[i] = b[k] - b[i] * factor
x[n - 1] = b[n - 1] / a[n - 1, n - 1]
for i in range(n - 2, -1, -1):
sum_ax = 0
for j in range(i + 1, n):
sum_ax += a[i, j] * x[j]
x[i] = (b[i] - sum_ax) / a[i, i]
# Parallelize Gaussian elimination and back substitution
def parallel_gaussian_elimination_and_back_substitution(a, b, x, n, num_threads):
# Calculate chunk size for each thread
chunk_size = n // num_threads
threads = []
# Create and start threads
for i in range(num_threads):
start = i * chunk_size
end = start + chunk_size if i < num_threads - 1 else n
thread = threading.Thread(target=gaussian_elimination_and_back_substitution,
args=(a, b, x, n, start, end))
threads.append(thread)
thread.start()
# Wait for all threads to finish
for thread in threads:
thread.join()
def generatePositionsLookuptable(service_configs):
#P25
height = service_configs.camera_configs.camera_height#512
width = service_configs.camera_configs.camera_width#896
#Superior esquerdo
x1 = int(service_configs.frame_points[0][0])#125
y1 = int(service_configs.frame_points[0][1])#85
#Superior direito
x2 = int(service_configs.frame_points[1][0])#660
y2 = int(service_configs.frame_points[1][1])#70
#Inferior esquerdo
x3 = int(service_configs.frame_points[2][0])#70
y3 = int(service_configs.frame_points[2][1])#470
#Inferior direito
x4 = int(service_configs.frame_points[3][0])#750
y4 = int(service_configs.frame_points[3][1])#430
#Coordenadas
x1l = float(service_configs.world_points[0][0])#40.637156
y1l = float(service_configs.world_points[0][1])#-8.653339
x2l = float(service_configs.world_points[1][0])#40.637110
y2l = float(service_configs.world_points[1][1])#-8.653010
x3l = float(service_configs.world_points[2][0])#40.636928
y3l = float(service_configs.world_points[2][1])#-8.653224
x4l = float(service_configs.world_points[3][0])#40.636921
y4l = float(service_configs.world_points[3][1])#-8.653145
#Input System of Equations
a = array([[x1, y1, 1, 0, 0, 0, (-1)*x1*x1l, (-1)*y1*x1l],
[0, 0, 0, x1, y1, 1, (-1)*x1*y1l, (-1)*y1*y1l],
[x2, y2, 1, 0, 0, 0, (-1)*x2*x2l, (-1)*y2*x2l],
[0, 0, 0, x2, y2, 1, (-1)*x2*y2l, (-1)*y2*y2l],
[x3, y3, 1, 0, 0, 0, (-1)*x3*x3l, (-1)*y3*x3l],
[0, 0, 0, x3, y3, 1, (-1)*x3*y3l, (-1)*y3*y3l],
[x4, y4, 1, 0, 0, 0, (-1)*x4*x4l, (-1)*y4*x4l],
[0, 0, 0, x4, y4, 1, (-1)*x4*y4l, (-1)*y4*y4l]], float)
b = array([x1l, y1l, x2l, y2l, x3l, y3l, x4l, y4l], float)
n = len(b)
x = zeros(n, float)
num_threads = 6 # Number of threads to use
parallel_gaussian_elimination_and_back_substitution(a, b, x, n, num_threads)
a = x[0]
b = x[1]
gama1 = x[2]
c = x[3]
d = x[4]
gama2 = x[5]
p = x[6]
q = x[7]
A = [[a, b, gama1],
[c, d, gama2],
[p, q, 1]]
# Call the function to compute the lookup matrix in parallel
lookup = parallel_compute_lookup(A, height, width, num_threads)
return lookup
def get_frame(socket, client_id):
data = {"id" : client_id}
socket.send(pickle.dumps(data))
message = socket.recv()
data = pickle.loads(message)
return data["frame"]
def thread_get_most_recent_frame(service_configs, queue, logs, frame_mutex, mqtt_publishing_event):
detection_method = service_configs.detection_method
camera_configs = service_configs.camera_configs
url = service_configs.camera_configs.camera_rtsp
mtx = np.load("calibration matrixs/Original camera matrix.npy")
dist = np.load("calibration matrixs/Distortion coefficients.npy")
newcameramtx = np.load("calibration matrixs/Optimal coefficients.npy")
if detection_method == "rtsp":
#gst_str = "rtspsrc location="+url+" latency=50 ! rtph265depay ! h265parse ! nvv4l2decoder ! nvvidconv ! video/x-raw,format=BGRx ! videoconvert ! video/x-raw,format=BGR ! appsink"
#gst_str = "rtspsrc location=rtsp://admin:openlab@atcll-p35-camera.nap.av.it.pt:554//h264Preview_01_sub latency=50 ! rtph264depay ! h264parse ! nvv4l2decoder ! nvvidconv ! video/x-raw,format=BGRx ! videoconvert ! video/x-raw,format=BGR ! appsink"
gst_str = "rtspsrc location="+str(camera_configs.camera_rtsp)+" latency=50 ! rtph265depay ! h265parse ! nvv4l2decoder ! nvvidconv ! video/x-raw,format=BGRx ! videoconvert ! video/x-raw,format=BGR ! appsink drop=true"
#gst_str = "rtspsrc location="+str(camera_configs.camera_rtsp)+" ! nvv4l2h265enc ! h265parse ! rtph265pay pt=96 config-interval=1 ! appsink"
cap = cv2.VideoCapture(gst_str, cv2.CAP_GSTREAMER)
#cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
#mqtt_publishing_event.release()
while (cap.isOpened()):
mqtt_publishing_event.acquire()
start = time.time()
ret, frame = cap.read()
if ret == True:
frame = cv2.resize(frame, (camera_configs.camera_width, camera_configs.camera_height), interpolation = cv2.INTER_AREA)
frame = cv2.undistort(frame, mtx, dist, None, newcameramtx)
with frame_mutex:
queue.put(frame)
else:
raise Exception("No camera feed")
logs.put("HTTP Frame Duration: "+str(time.time()-start))
time.sleep(0.03)
else:
while True:
mqtt_publishing_event.acquire()
resp = requests.get(str(camera_configs.camera_http))
arr = np.asarray(bytearray(resp.content), dtype=np.uint8)
frame = np.array(cv2.imdecode(arr, -1))
_, width = frame.shape[:2]
roi = frame[:, width//3:]
frame = cv2.rotate(roi, cv2.ROTATE_90_CLOCKWISE)
frame = cv2.resize(frame, (camera_configs.camera_width, camera_configs.camera_height), interpolation = cv2.INTER_AREA)
with frame_mutex:
queue.put(frame)
time.sleep(0.03)
def thread_yolo_service_detection(service_configs, to_detect_objects, queue_frames, queue_detection_results, frame_mutex, results_mutex, mqtt_publishing_event):
detection_location = service_configs.detection_location
camera_configs = service_configs.camera_configs
conf = service_configs.detection_confidence_threshold
context = zmq.Context()
# Socket to talk to server
socket = context.socket(zmq.REQ)
socket.connect("tcp://"+str(detection_location)+":10100")
closed = False
while not closed:
start = time.time()
data = None
while(queue_frames.empty()):
time.sleep(0.01)
with frame_mutex:
while (not queue_frames.empty()):
data = queue_frames.get()
data = {"frame" : data, "id" : "P"+str(camera_configs.camera_id), "width" : camera_configs.camera_width, "height" : camera_configs.camera_height, "confidence" : conf, "obj_list" : to_detect_objects}
socket.send(pickle.dumps(data))
message = socket.recv()
with results_mutex:
queue_detection_results.put(message)
mqtt_publishing_event.release()
time.sleep(0.01)
def parse_args():
logging.info("version yolov8")
configur = ConfigParser()
configur.read('config.ini')
camera_id = int(configur.get('CAMERA','id'))
width = int(configur.get('CAMERA','width'))
height = int(configur.get('CAMERA','height'))
rtsp = configur.get('CAMERA','rtsp')
http = configur.get('CAMERA','http')
location = (configur.get('CAMERA','latitude'), configur.get('CAMERA','longitude'))
zoom = int(configur.get('CAMERA','zoom'))
heading = configur.get('CAMERA','heading')
rotate = int(configur.get('CAMERA','rotation'))
detection_rate = int(configur.get('DETECTION','rate'))
detection_method = configur.get('DETECTION','method')
selected_objects = str(configur.get('DETECTION','filter')).split(",")
conf_threshold = float(configur.get('DETECTION','threshold'))
timeout = int(configur.get('DETECTION','timeout'))
detection_location = str(configur.get('DETECTION', 'detectionServerIp'))
detection_broker = str(configur.get('DETECTION', 'brokerIp'))
frame_points = []
world_points = []
#1
frame_points.append(str(configur.get('FRAME_POINTS','point1')).split(","))
world_points.append(str(configur.get('WORLD_POINTS','point1')).split(","))
#2
frame_points.append(str(configur.get('FRAME_POINTS','point2')).split(","))
world_points.append(str(configur.get('WORLD_POINTS','point2')).split(","))
#3
frame_points.append(str(configur.get('FRAME_POINTS','point3')).split(","))
world_points.append(str(configur.get('WORLD_POINTS','point3')).split(","))
#4
frame_points.append(str(configur.get('FRAME_POINTS','point4')).split(","))
world_points.append(str(configur.get('WORLD_POINTS','point4')).split(","))
camera_configs = CameraConfigs(camera_id, width, height, rtsp, http, location[0], location[1], rotate, zoom, heading)
service_configs = ServiceConfigs(camera_configs, detection_rate, detection_method, conf_threshold, selected_objects, timeout, detection_location, detection_broker, frame_points, world_points)
return service_configs
def loop_and_detect(table, queue_results, queue_frames_logs, results_mutex, vis, service_configs, mqtt_publishing_event):
# Get the current timestamp
timestamp = int(time.time())
random.seed(timestamp)
posteID = int(service_configs.camera_configs.camera_id)
detection_dic_id = {}
detection_dic_time = {}
reversed_vis = dict(map(reversed, vis.items())) #index to identification
etsi_correspondence = {0 : "unknown",
1 : "person",
2 : "bicycle",
4 : "motorcycle",
5 : "car",
6 : "bus",
7 : "truck"}
etsi_correspondence = {value: key for key, value in etsi_correspondence.items()}
client = mqtt.Client()
client.connect(str(service_configs.detection_broker), 1883, 60)
mqtt_th = threading.Thread(target=client.loop_forever)
mqtt_th.start()
logging.info("Started MQTT")
restart_time = time.time()
while True:
message = None
limit_threshold = time.time()+service_configs.detection_timeout
while(queue_results.empty()):
time_passed = time.time()
if time.time()-restart_time>service_configs.detection_timeout:
logging.info("Passed "+str(service_configs.detection_timeout)+" seconds timeout - no detection data")
raise Exception("Information not recieved")
exit()
if time.time()-restart_time>service_configs.detection_timeout:
raise Exception("Restart service")
with results_mutex:
while (not queue_results.empty()):
message = queue_results.get()
if time.time()-restart_time>service_configs.detection_timeout:
time.sleep(1)
raise Exception("Restart service")
#print("Received reply [ %s ]" % (message))
start = time.time()
#results_dic = json.loads(message.decode("utf-8"))
full_dic = json.loads(message.decode("utf-8"))
tracking_dic = full_dic["tracking_results"]
#print(tracking_dic)
boxes = tracking_dic["boxes"][0]
confs = tracking_dic["confs"][0]
clss = tracking_dic["clss"][0]
timestamp_start = tracking_dic["timestamp_start_yolo"]
timestamp_end = tracking_dic["model_processing_time"]
#print(str(boxes), '\n',str(confs), '\n',str(clss), '\n',)
number_detected = len(tracking_dic["clss"][0])
others = []
avg_position_per_class = {}
detected = False
names = []
for ind in range(0, number_detected):
# Transform class indexes into names
name = reversed_vis[int(clss[ind])]
names.append(name)
if avg_position_per_class.get(name) is None:
avg_position_per_class[name] = [[0.0, 0.0], 0]
dic = {
"id" : str(uuid.uuid4()),
"label" : name,
"confidence" : str(confs[ind]),
"bbbox" : [[int(boxes[ind][0]), int(boxes[ind][1])],
[int(boxes[ind][2]-boxes[ind][0]), int(boxes[ind][3]-boxes[ind][1])]],
"coordinates" : {}
}
bbox = [[int(boxes[ind][0]), int(boxes[ind][1])],[int(boxes[ind][2]-boxes[ind][0]), int(boxes[ind][3]-boxes[ind][1])]]
#coordinates = bbox_processing(bbox)
#BBox Center
#detection_position = [bbox[0][0]+(bbox[1][0]/2), bbox[0][1]+(bbox[1][1]/2)]
#Foot Aprox
detection_position = [bbox[0][0]+(bbox[1][0]/2), bbox[0][1]+bbox[1][1]-1]
#coordinates = [0,0]
#print(table[int(detection_position[1])][int(detection_position[0])], int(detection_position[1]), int(detection_position[0]))
coordinates = table[int(detection_position[1])][int(detection_position[0])]
old_stats = avg_position_per_class[name]
count = old_stats[1]
old_stats[0][0] = ((old_stats[0][0]*count) + coordinates[0]) / (count+1)
old_stats[0][1] = ((old_stats[0][1]*count) + coordinates[1]) / (count+1)
old_stats[1] = old_stats[1]+1
avg_position_per_class[name] = old_stats
dic["coordinates"]["lat"] = coordinates[0]
dic["coordinates"]["lon"] = coordinates[1]
others.append(dic)
#"timestamp_readFrame" : str(last_start_timestamp),
final_json_p = {
"detectedPerson" : str(detected),
"listOfObjects" : others,
"timestamp" : str(time.time()),
"heading" : str(service_configs.camera_configs.camera_heading),
"location" : {"lat": CAMERA_COORDINATES[0], "lon": CAMERA_COORDINATES[1]}
}
client.publish("jetson/camera/objects", payload=json.dumps(final_json_p), qos=0, retain=False)
count_of_classes = {}
avg_confidences_of_classes = {}
interval_confidences_of_classes = {}
logging.info("Classes={} | names={} | confs={} | # = {}".format(clss, names, confs, len(confs)))
#count_of_classes={} | confidences_of_classes={}
names = np.array(names)
for item in np.unique(names).tolist():
item_index = np.where(names == item)[0].tolist()
values = [confs[i] for i in range(len(names)) if names[i] == item]
avg_confidences_of_classes[item] = float(sum(values) / len(item_index)) / 100.0
interval_confidences_of_classes[item] = [0, 1] # confidence_interval(values)
count_of_classes[item] = np.count_nonzero(names == item)
#print(item_index, values, avg_confidences_of_classes, interval_confidences_of_classes, count_of_classes)
for class_label in np.unique(names).tolist():
final_json_new_format = {
"timestamp" : time.time(),
"classLabel" : class_label,
"classCount" : count_of_classes[class_label],
"confidenceAvg" : avg_confidences_of_classes[class_label],
"confidenceMinInterval" : interval_confidences_of_classes[class_label][0],
"confidenceMaxInterval" : interval_confidences_of_classes[class_label][1],
"heading" : float(service_configs.camera_configs.camera_heading),
"zoom" : float(service_configs.camera_configs.camera_zoom),
"latitude": avg_position_per_class[class_label][0][0],
"longitude": avg_position_per_class[class_label][0][1],
"cameraID": service_configs.camera_configs.camera_id,
"test": str({}),
"algorithm": "yolov8n",
}
#logging.info(final_json_new_format)
#client.publish("Jetson/Camara/Count", payload=json.dumps(final_json_p), qos=0, retain=False)
client.publish("jetson/camera/count", payload=json.dumps(final_json_new_format), qos=0, retain=False)
#print(boxes)
global_ids = tracking_dic["global_ids"][0]
others = []
confidences = {}
avg_position_per_class = {}
for i in detection_dic_time.copy().keys():
if time.time()-detection_dic_time[i]>10:
detection_dic_time.pop(i, None)
detection_dic_id.pop(i, None)
try:
for ind in range(0, len(global_ids)):
if global_ids[ind] not in detection_dic_time.keys():
hex_time = time.time()
# Concatenate the constant with the data
data_with_constant = str(posteID) + str(global_ids[ind]) + str(timestamp)
# Create a hash object using SHA-256 algorithm
hash_object = hashlib.sha256()
# Update the hash object with the bytes-like object (UTF-8 encoded string in this case)
hash_object.update(data_with_constant.encode('utf-8'))
hexa = hash_object.hexdigest()
# Truncate the hash to 32 bits (8 characters)
truncated_hash = hexa[:7]
detection_dic_id[global_ids[ind]] = int(truncated_hash, 16)
detection_dic_time[global_ids[ind]] = time.time()
dic = {
"objectID" : detection_dic_id[global_ids[ind]],
"globalID" : global_ids[ind],
"classification" : etsi_correspondence[reversed_vis[vis[names[ind]]]],
"confidence" : int(str(confs[ind])),
"bbox" : {
"top_left_x" : int(boxes[ind][0]),
"top_left_y" : int(boxes[ind][1]),
"width" : int(boxes[ind][2]-boxes[ind][0]),
"height" : int(boxes[ind][3]-boxes[ind][1])
},
"latitude": 0,
"longitude": 0,
"heading": None,
"speed": None,
"event": ""
}
bbox = [[int(boxes[ind][0]), int(boxes[ind][1])],[int(boxes[ind][2]-boxes[ind][0]), int(boxes[ind][3]-boxes[ind][1])]]
#coordinates = bbox_processing(bbox)
#BBox Center
#detection_position = [bbox[0][0]+(bbox[1][0]/2), bbox[0][1]+(bbox[1][1]/2)]
#Foot Aprox
detection_position = [bbox[0][0]+(bbox[1][0]/2), bbox[0][1]+bbox[1][1]-1]
#coordinates = [0,0]
#print(detection_position)
coordinates = table[int(detection_position[1])][int(detection_position[0])]
dic["latitude"] = coordinates[0]
dic["longitude"] = coordinates[1]
others.append(dic)
except Exception as e:
trace = []
tb = e.__traceback__
while tb is not None:
trace.append({
"filename": tb.tb_frame.f_code.co_filename,
"name": tb.tb_frame.f_code.co_name,
"lineno": tb.tb_lineno
})
tb = tb.tb_next
print(str({
'type': type(e).__name__,
'message': str(e),
'trace': trace
}))
#print(others)
#"timestamp_readFrame" : str(last_start_timestamp),
#print(timestamp_end)
final_json_p = {
"numberOf" : len(others),
"listOfObjects" : others,
"timestamp" : time.time(),
"receiverID" : int(service_configs.camera_configs.camera_id),
"test" : {"timestamp_start_yolo": timestamp_start[0], "timestamp_end_yolo": timestamp_end},
}
client.publish("jetson/camera/tracking/objects", payload=json.dumps(final_json_p), qos=0, retain=False)
m_log = None
while (not queue_frames_logs.empty()):
m_log = queue_frames_logs.get()
logging.info("Results and Msgs processing: "+str(time.time()-start))
time.sleep(0.03)
restart_time = time.time()
def main():
global CAMERA_COORDINATES
service_configs = parse_args()
with open('names.pkl', 'rb') as fp: #load id of avaliable detections
vis = pickle.load(fp)
vis = dict(map(reversed, vis.items()))
to_detect_objects = [vis[name] for name in service_configs.detection_object_set]
logging.info(to_detect_objects)
logging.info(vis)
logging.info("Making table")
table = generatePositionsLookuptable(service_configs)
logging.info("Table done")
while True:
frame_mutex = multiprocessing.Lock()
results_mutex = multiprocessing.Lock()
mqtt_publishing_event = multiprocessing.Lock()
q_frames = Queue(maxsize=0)
q_frames_logs = Queue(maxsize=0)
q_results = Queue(maxsize=0)
p_frames = Process(target=thread_get_most_recent_frame, args=(service_configs, q_frames, q_frames_logs, frame_mutex, mqtt_publishing_event))
p_results = Process(target=thread_yolo_service_detection, args=(service_configs, to_detect_objects, q_frames, q_results, frame_mutex, results_mutex, mqtt_publishing_event))
p_frames.start()
p_results.start()
try:
loop_and_detect(table, q_results, q_frames_logs, results_mutex, vis=vis, service_configs=service_configs, mqtt_publishing_event=mqtt_publishing_event)
time.sleep(0.01)
except Exception as e:
trace = []
tb = e.__traceback__
while tb is not None:
trace.append({
"filename": tb.tb_frame.f_code.co_filename,
"name": tb.tb_frame.f_code.co_name,
"lineno": tb.tb_lineno
})
tb = tb.tb_next
print(str({
'type': type(e).__name__,
'message': str(e),
'trace': trace
}))
p_frames.terminate()
p_results.terminate()
frame_mutex = multiprocessing.Lock()
results_mutex = multiprocessing.Lock()
logging.info("anomaly detected - restarting the service")
if __name__ == '__main__':
main()